Abstract

BackgroundSpinal fusion is a commonly used procedure in spinal surgery. To ensure stable fusion, bone graft materials are used. ABM/P-15 (commercial name i-Factor™ Flex) is an available synthetic bone graft material that has CE approval in Europe. This peptide has been shown to improve bone formation when used in devices with fixation or on bone defects. However, the lack of external stability and large graft size make posterolateral lumbar fusion (PLF) a most challenging grafting procedure. This prospective randomized study was designed to evaluate early spinal fusion rates using an anorganic bovine-derived hydroxyapatite matrix (ABM) combined with a synthetic 15 amino acid sequence (P-15)–ABM/P-15 bone graft, and compared with allograft in an uninstrumented PLF model in sheep. The objective of this study was to assess fusion rates when using ABM/P-15 in uninstrumented posterolateral fusion in sheep.MethodsTwelve Texas/Gotland mixed breed sheep underwent open PLF at 2 levels L2/L3 and L4/L5 without fixation instruments. The levels were randomized so that sheep received an ABM graft either with or without P15 coating. Sheep were euthanized after 4.5 months and levels were harvested and evaluated with a micro-CT scanner and qualitative histology. Fusion rates were assessed by 2D sections and 3D reconstruction images and fusion was defined as intertransverse bridging.ResultsThere was 68% fusion rate in the allograft group and an extensive migration of graft material was noticed with a fusion rate of just 37% in the ABM/P-15 group. Qualitative histology showed positive osteointegration of the material and good correlation to scanning results.ConclusionsIn this PLF fusion model, ABM/P15 demonstrated the ability to migrate when lacking external stability. Due to this migration, reported fusion rates were significantly lower than in the allograft group. The use of ABM/P15 as i-Factor™ Flex may be limited to devices with fixation and bone defects.

Highlights

  • Spinal fusion is a commonly used procedure in spinal surgery

  • No studies have evaluated anorganic bovine-derived hydroxyapatite matrix (ABM)/ P-15 in a flex formula in a posterolateral lumbar fusion (PLF) model. The aim of this prospective randomized study was to evaluate early spinal fusion rates using ABM/P-15 bone graft compared with allograft in a two-level uninstrumented PLF model in sheep

  • The aim of this study was to evaluate early spinal fusion rates using ABM/P-15 bone graft compared with allograft in a two-level uninstrumented PLF model in sheep

Read more

Summary

Introduction

Spinal fusion is a commonly used procedure in spinal surgery. To ensure stable fusion, bone graft materials are used. ABM/P-15 (commercial name i-FactorTM Flex) is an available synthetic bone graft material that has CE approval in Europe. This peptide has been shown to improve bone formation when used in devices with fixation or on bone defects. The lack of external stability and large graft size make posterolateral lumbar fusion (PLF) a most challenging grafting procedure. This prospective randomized study was designed to evaluate early spinal fusion rates using an anorganic bovine-derived hydroxyapatite matrix (ABM) combined with a synthetic 15 amino acid sequence (P-15)–ABM/P-15 bone graft, and compared with allograft in an uninstrumented PLF model in sheep. Many different approaches have been tried, and posterior, anterior, and interbody fusion

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.