Abstract
The chemical composition and stoichiometry of vertically aligned arrays of nitrogen-doped multi-walled carbon nanotubes (N-CNTs) were studied by photoelectron spectroscopy using laboratory and synchrotron X-ray sources. We performed careful deconvolution of high-resolution core-level spectra to quantify pyridine/pyrrole-like defects in N-CNTs, which are a key factor in the efficiency of the piezoelectric response for this material. It is shown that the XPS method makes it possible to estimate the concentration and type of nitrogen incorporation (qualitatively and quantitatively) in the “N-CNT/Mo electrode” system using both synchrotron and laboratory sources. The obtained results allow us to study the effect of the nickel catalytic layer thickness on the concentration of pyridine/pyrrole-like nitrogen and piezoelectric response in the nanotubes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.