Abstract

Eligibility of ventilated preterm rabbit model to investigate extreme pulmonary immaturity at birth transition is unknown. By extending this model to early saccular stage of fetal lung development, we evaluated efficacy in survival, lung maturation, and underlying mechanisms of contemporary perinatal therapies. Pregnant New Zealand White rabbit does were given dexamethasone (DEX), or sham injection as control (NDEX), 48 and 24 h before delivery at gestational age (GA) of 25-28 days. At birth, newborn rabbits were anesthetized and randomly allocated to four groups receiving either surfactant or nonsurfactant for both DEX and NDEX, and mechanically ventilated within low tidal volumes. Ranges of time to maintain survival rate ≥ 50% in GA 25-28 days were 59-136, 138-259, 173-288, and 437 to ≥600 min, respectively, each across the four groups. The benefits of DEX and/or surfactant for survival were more obvious in GA 25-26 days, as judged by improved lung mechanics, lower lung injury scores, higher lung surfactant phospholipid pools, and surfactant protein mRNA expression, with DEX-surfactant combination being the most optimal for the outcome. In contrast, those of GA 27-28 days had variable but meaningful responses to the treatment. Cox regression analysis revealed GA, DEX, and surfactant being independently protective factors whereas pneumothorax was a risk factor. The extremely preterm rabbits at GA 25-26 days markedly responded to the perinatal therapies for longer survival, lung maturation and injury alleviation, and were relevant for study of preterm birth transition-associated morbidities and underlying mechanisms.NEW & NOTEWORTHY An extremely preterm rabbit model with gestational age of 25-26 (term 31) days was established by mechanical ventilation with individually adjusted tidal volume at lower ranges. The administration of antenatal glucocorticoids and/or postnatal surfactant achieved significantly longer duration to maintain 50% survival and facilitated lung maturation and protection at early saccular stage. The usefulness of this model should be validated in future investigation of perinatal and neonatal morbidity and mortality at extremely preterm birth transition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call