Abstract
Focal mechanism and surface slip data are used to investigate whether kinematics are similar at depth and at the surface along an active normal fault in the Gulf of Corinth, Greece. We present a new database of slip data from the lateral termination of the South Alkyonides fault segment (SAFS) and the en échelon stepover between it and an adjacent fault, and use published data on surface slip and focal mechanism data pertaining to slip at depth during the 1981 Alkyonides earthquake sequence. The focal mechanisms exhibit similar fault plane orientations and kinematics to those measured at the surface. Within the stepover, both data sets show that contemporaneous c. N–S and c. E–W extension is being accommodated by c. E–W- and c. N–S-oriented normal faults, and the overall deformation is distributed oblate vertical flattening. The deviation of the surface slip direction from 350° increases with distance from the centre of the SAFS. The deviation of the focal mechanism T-axes from 350° fit well with the surface data, implying that the coseismic slip on the SAFS at depths of 7–10 km exhibits a similar kinematic pattern as that observed at the surface. Our results imply that it is critical to know the along-strike position of data on a fault if either focal mechanisms or surface slip are to be used to infer regional strain and stress trajectories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.