Abstract

Surface modification and solid dispersion formulations using hydrophilic excipients can significantly alter the dissolution behaviour of hydrophobic drug materials. The effect of these techniques used individually and in combination on the dissolution properties of the hydrophobic drug, phenylbutazone (PB), are compared. PB was treated with a poloxamer, Synperonic ® F127 by an adsorption method. Solid dispersions (10 and 20% w/w) were prepared with untreated PB or PB previously modified with Synperonic ® F127 (PBT) in molten F127. Dissolution tests of capsule formulations of PB, PBT and solid dispersion formulations, in pH 6.4 buffer at 37±0.5°C demonstrated that after 140 min, release of PB was 16.7%, but 71.4% from the solid dispersion, whereas from the PBT formulation 85.6% was released. The Synperonic ® F127 content of PBT was only 0.05% of that in the solid dispersion formulation which suggests that it is the nature of the drug polymer contact rather than the amount of polymer which is more critical in influencing dissolution behaviour. Comparison of PBT and the 10% w/w solid dispersion of PBT in F127 showed similar amounts of drug in solution after 140 min. However there was a significantly higher release rate for PBT. Both formulation techniques offer significant improvements in drug release over untreated PB, and a combination of techniques changes the rate but not the extent of release in comparison with the surface modification technique alone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.