Abstract

Membrane bioreactors (MBRs) were compared with conventional activated sludge systems (CAS) for micropollutant degradation, in laboratory-scale spiking experiments with synthetic and real domestic wastewater. The target micropollutants were polar in nature and represented a broad range in biodegradability. The experimental data indicated that MBR treatment could significantly enhance removal of the micropollutants 1,6- and 2,7-naphthalene disulfonate (NDSA) and benzothiazole-2-sulfonate. 1,5-NDSA, EDTA and diclofenac were not removed in either the MBR or the CAS. The other compounds were equally well degraded in both systems. For 1,3-naphthalene disulfonate, the existence of a minimum threshold level for degradation could be demonstrated. Although MBRs could not always make a difference in the overall removal efficiencies achieved, they showed reduced lag phases for degradation and a stronger memory effect, which implies that they may respond quicker to variable influent concentrations. Finally, micropollutant removal also turned out to be less sensitive to system operational variables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.