Abstract

UV-C photo-assisted persulfate (PS), hydrogen peroxide (H2O2) and peroxymonosulfate (PMS) oxidation processes were evaluated and compared for aqueous phenol degradation. The effect of initial oxidant concentration on PS/UV-C, H2O2/UV-C and PMS/UV-C treatment efficiencies was examined on the basis of phenol and total organic carbon (TOC) removals. Complete phenol degradation could be achieved under all examined reaction conditions with apparent phenol degradation rate constants varying between 0.069±0.002–0.382±0.003min−1 accompanied with complete TOC removals (⩾97%) under optimized PS (20mM), H2O2 (30mM) and PMS (20mM) concentrations. Hydroquinone, catechol and benzoquinone were quantified during H2O2/UV-C and PMS/UV-C treatment of phenol verifying a HO-dominated oxidation pathway. During PS/UV-C oxidation, the identification of benzoquinone and 3-phenoxyphenol verified the hydroxycyclohexadienyl radical and phenoxyl radical pathways in SO4- mediated phenol oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.