Abstract

The subwavelength focusing properties of diffractive plasmonic planar lenses (DPLs) and Fresnel zone plate plasmonic planar lenses (FZPs) have been compared in this paper. To that end, we use the same lens material, incident wavelength, thickness and focal length for comparison. Both DPLs and FZPs consist of central circular slits surrounded by transparent and opaque zones and can get clear focusing performances. By using the rigorous electromagnetic numerical method, the fields in the focal region are analyzed in detail, and our results demonstrate that FZP can generate higher transmission efficiency, and higher peak field intensity at the focal plane. Focusing polarization properties of the lens illuminated by linearly polarized state, are calculated and analyzed also. The numerical results show that both the DPL and the FZP produce asymmetrical focal spot distributions with a low f-number. To the FZP, the full-width at half-maximum (FWHM) varies from 256nm (along y-axis) to 516nm(along x-axis) and to the DPL, the FWHM varies from 256nm(along y-axis) to 580nm(along x-axis), respectively. But for a high f-number, the asymmetrical performance of the focal spot will be reduced due to complicated electromagnetical field interferences and micro waveguide effect. Otherwise, the DPL can get a higher depolarization effect than the FZP does.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call