Abstract

The saturated and 2-enoic primary alcohols and aldehydes, ethanol, 1-propanol, 1-butanol, 3-methyl-1-butanol, 1-hexanol, phenylmethanol, 3-phenyl-1-propanol, 2-propen-1-ol, 2-buten-1-ol, 3-methyl-2-buten-1-ol, 2-hexen-1-ol, 3-phenyl-2-propen-1-ol, ethanal, 1-propanal, 1-butanal, 1-hexanal, phenylmethanal, 3-phenyl-1-propanal, 2-propen-1-al, 2-buten-1-al, 2-hexen-1-al, and 3-phenyl-2-propen-1-al, have been compared under uniform conditions as substrates for the alcohol dehydrogenase enzymes from horse and human liver and from yeast. Kinetic constants ( K m arid V) have been measured for each of the substrates with each of the enzymes; equilibrium constants for the various alcohol-aldehyde pairs have also been estimated. The results obtained emphasize the similarities of yeast alcohol dehydrogenase to horse and human liver alcohol dehydrogenase, showing the specificity of yeast alcohol dehydrogenase to be less restricted than formerly believed. In general, the 2-enoic alcohols are better substrates for all three alcohol dehydrogenases than their saturated analogs; on the other hand, saturated aldehydes are better substrates than the 2-enoic aldehydes. Based on these various findings, it is suggested that a more likely candidate than ethanol for the physiological substrate of alcohol dehydrogenase in mammalian systems may well be an unsaturated alcohol, although the wide variety of substrates catalyzed at high rates is not incompatible with a general detoxifying function for alcohols or aldehydes, or both, by alcohol dehydrogenase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call