Abstract

Purpose This paper aims to address the performance of different subgrid-scale models (SGS) for hydro- (HD) and magnetohydrodynamic (MHD) channel flows within a collocated finite-volume scheme. Design/methodology/approach First, the SGS energy transfer is analyzed by a priori tests using fully resolved DNS data. Here, the focus lies on the influence of the magnetic field on the SGS energy transport. Second, the authors performed a series of 18 a posteriori model tests, using different grid resolutions and SGS models for HD and MHD channel flows. Findings From the a priori analysis, the authors observe a quantitative reduction of the SGS energy transport because of the action of the magnetic field depending on its orientation. The a posteriori model tests show a clear improvement because of the use of mixed-models within the numerical scheme. Originality/value This study demonstrates the necessity of improved SGS modeling strategies for magnetohydrodynamic channel flows within a collocated finite-volume scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call