Abstract

Simple SummaryThe wide variety of next-generation sequencing technologies requires thorough evaluation and understanding of their advantages and shortcomings of these different approaches prior to their implementation in a precision medicine setting. Here, we compared the performance of two DNA sequencing methods, whole-exome and linked-read exome sequencing, to detect large structural variants (SVs) and short variants in eight multiple myeloma (MM) patient cases. For three patient cases, matched tumor-normal samples were sequenced with both methods to compare somatic SVs and short variants. The methods’ clinical relevance was also evaluated, and their sensitivity and specificity to detect MM-specific cytogenetic alterations and other short variants were measured. Thus, this study systematically demonstrates and evaluates the performance of whole-exome and linked-read exome sequencing technologies for detecting genetic alterations to aid in selecting the optimal method for clinical application.Linked-read sequencing was developed to aid the detection of large structural variants (SVs) from short-read sequencing efforts. We performed a systematic evaluation to determine if linked-read exome sequencing provides more comprehensive and clinically relevant information than whole-exome sequencing (WES) when applied to the same set of multiple myeloma patient samples. We report that linked-read sequencing detected a higher number of SVs (n = 18,455) than WES (n = 4065). However, linked-read predictions were dominated by inversions (92.4%), leading to poor detection of other types of SVs. In contrast, WES detected 56.3% deletions, 32.6% insertions, 6.7% translocations, 3.3% duplications and 1.2% inversions. Surprisingly, the quantitative performance assessment suggested a higher performance for WES (AUC = 0.791) compared to linked-read sequencing (AUC = 0.766) for detecting clinically validated cytogenetic alterations. We also found that linked-read sequencing detected more short variants (n = 704) compared to WES (n = 109). WES detected somatic mutations in all MM-related genes while linked-read sequencing failed to detect certain mutations. The comparison of somatic mutations detected using linked-read, WES and RNA-seq revealed that WES and RNA-seq detected more mutations than linked-read sequencing. These data indicate that WES outperforms and is more efficient than linked-read sequencing for detecting clinically relevant SVs and MM-specific short variants.

Highlights

  • Genetic alterations are broadly categorized into short variants, like single nucleotide substitutions and small insertions and deletions, and larger structural variants (SVs)

  • We evaluated the performance of linked-read sequencing and whole-exome sequencing (WES) to detect SVs

  • We compared the performance of linked-read sequencing, WES and RNA sequencing (RNA-seq) to detect short variants

Read more

Summary

Introduction

Genetic alterations are broadly categorized into short variants, like single nucleotide substitutions and small insertions and deletions, and larger structural variants (SVs). Aberrations longer than 50 bp are defined as SVs [1] and can occur in single or multiple chromosomes as pairs of breakpoints resulting in duplications, deletions, insertions, inversions and translocations among others in the genome [2,3]. Identifying and understanding SVs and short variants are important for cancer diagnosis and prognosis and have been employed to study disease initiation, progression and tumor evolution for multiple cancer types [3,4,5,6,7]. Extensive genome sequencing studies have revealed the landscapes of short variants and SVs in cancers [3]. Technological advances have made the detection of SVs with the help of exome sequencing more feasible, the proportion of SVs detected in the human genome has remained underrepresented in cancer genome studies [8,9,10,11]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.