Abstract

Bioreactance is a non-invasive technology for measuring stroke volume (SV) in the operating room and critical care setting. We evaluated how the NICOM® bioreactance device performed against the CardioQ® esophageal Doppler monitor in patients undergoing major abdominal-pelvic surgery, focusing on the effect of different hemodynamic interventions. SVNICOM and SVODM were simultaneously measured intraoperatively, including before and after interventions including fluid challenge, vasopressor boluses, peritoneal gas insufflation/removal, and Trendelenburg/reverse Trendelenburg patient positioning. A total of 768 values were collected from 21 patients. Pre- and post-intervention measures were recorded on 155 occasions. Bland-Altman analysis revealed a bias of 8.6ml and poor precision with wide limits of agreement (54 and -37ml) and a percentage error of 50.6%. No improvement in precision was detected after taking into account repeated measurements for each patient (bias: 8ml; limits of agreement: 74 and -59ml). Concordance between changes in SVNICOM and SVODM before and after interventions was also poor: 78.7% (all measures), 82.4% (after vasopressor administration), and 74.3% (after fluid challenge). Using Doppler SV as the reference technique, the area under the receiver operating characteristic curve assessing the ability of the NICOM device to predict fluid responsiveness was 0.81 (0.7-0.9). In patients undergoing major abdomino-pelvic surgery, SV values obtained by NICOM showed neither clinically or statistically acceptable agreement with those obtained by esophageal Doppler. Although, in the setting of this study, bioreactance technology cannot reliably replace esophageal Doppler monitoring, its accuracy for predicting fluid responsiveness was higher, up to approximately 80%. Observational study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.