Abstract
Kneeling is a common activity required for both occupational and cultural reasons and has been shown to be associated with an increased risk of knee disorders. While excessive contact pressure is considered to be a possible aggressor, it is not clear whether and to what extent stress on the cartilage during kneeling is different from that while standing. In this study, finite element models of the knee joint for both kneeling and standing positions were constructed. The results indicated differences in high-stress regions between kneeling and standing. And both the peak von-Mises stress and contact pressure on the cartilage were larger in kneeling. During kneeling, the contact pressure reached 4.25MPa under a 300N compressive load. It then increased to 4.66MPa at 600N and 5.15MPa at 1000N. Changing the Poisson's ratio of the cartilage, which represents changes in compressibility caused by different loading rates, was found to have an influence on the magnitude of stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.