Abstract

To elucidate the kinetics of the induction of DNA strand breaks by low-energy Auger electron emitters, we compared the yields of DNA breaks in supercoiled pUC19 DNA after the decay of 125I (1) in proximity to DNA after minor-groove binding (125I-iodoHoechst 33342, 125IH) and (2) at a distance from DNA (125I-iodoantipyrine, 125IAP). Iodine-125 bound to the minor groove in DNA or free in solution is equally effective per decay in producing single-strand breaks (SSBs), while 125I bound to the minor groove is 6.7-fold more efficient than 125I free in solution in producing double-strand breaks (DSBs) (1.08 +/- 0.13 compared to 0.16 +/- 0.01 DSB/decay). Consequently, SSB to DSB ratios for 125IAP and gamma radiation (20.7 +/- 2.9 and 43.8 +/- 1.5, respectively) are greater than that for 125IH (2.9 +/- 0.4). Finally, the decay of 125IH leads to fragmentation of plasmid DNA beyond SSBs and DSBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call