Abstract

The inverse Finite Element Method (iFEM) is a model-based technique for structural shape sensing based on a pattern of input strain data experimentally acquired on the structure. It is independent of the external load and material properties, making it a valid approach for composite materials monitoring. In this framework, the iFEM shape sensing capability is experimentally investigated on a carbon fiber reinforced polymer plate subjected to a compressive buckling condition. As logistic constraints impede strain sensor installation in all the desired locations, Smoothing Element Analysis (SEA) and polynomial fittings are used to pre-extrapolate the whole plate's strain field. Finally, after a sensitivity analysis on the input strain pre-extrapolation, the iFEM displacement reconstruction is validated with three lasers' independent measurements and direct FEM results, investigating the local and global shape sensing capability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call