Abstract

Ab initio harmonic force fields were calculated for ethane, propane, dimethyl ether, and cyclobutane at the STO-3G and 3-21G levels. The calculated frequencies, displacement eigenvectors, and calculated infrared absorption intensities were compared as they derive from force constants that were (i) unsealed; (ii) scaled to fit observed vibrational frequencies reported in the literature; (iii) evaluated at the optimized geometries; and (iv) evaluated at structures for which the bond lengths were corrected from the optimized geometries according to published procedures. A total of nine combinations of ab initio force field/reference geometry/G-matrix geometry were investigated for each of the four molecules. The ability of scaling factors as the only variables to predict vibrational parameters from STO-3G and 3-21G force fields was explored. Conditions were examined for which the scaling factors are satisfactorily transferable among different molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.