Abstract
BackgroundThe Interrupted Time Series (ITS) is a robust design for evaluating public health and policy interventions or exposures when randomisation may be infeasible. Several statistical methods are available for the analysis and meta-analysis of ITS studies. We sought to empirically compare available methods when applied to real-world ITS data.MethodsWe sourced ITS data from published meta-analyses to create an online data repository. Each dataset was re-analysed using two ITS estimation methods. The level- and slope-change effect estimates (and standard errors) were calculated and combined using fixed-effect and four random-effects meta-analysis methods. We examined differences in meta-analytic level- and slope-change estimates, their 95% confidence intervals, p-values, and estimates of heterogeneity across the statistical methods.ResultsOf 40 eligible meta-analyses, data from 17 meta-analyses including 282 ITS studies were obtained (predominantly investigating the effects of public health interruptions (88%)) and analysed. We found that on average, the meta-analytic effect estimates, their standard errors and between-study variances were not sensitive to meta-analysis method choice, irrespective of the ITS analysis method. However, across ITS analysis methods, for any given meta-analysis, there could be small to moderate differences in meta-analytic effect estimates, and important differences in the meta-analytic standard errors. Furthermore, the confidence interval widths and p-values for the meta-analytic effect estimates varied depending on the choice of confidence interval method and ITS analysis method.ConclusionsOur empirical study showed that meta-analysis effect estimates, their standard errors, confidence interval widths and p-values can be affected by statistical method choice. These differences may importantly impact interpretations and conclusions of a meta-analysis and suggest that the statistical methods are not interchangeable in practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.