Abstract

Short-term iceberg drift prediction is challenging. Large uncertainties in the driving forces – current, wind and waves – usually prevent accurate forecasts. Recently several statistical iceberg forecast models have been proposed by the authors, which use iceberg position measurements to improve the short-term drift forecast. In this article these statistical forecast methods and models are briefly reviewed. An extensive comparison between the statistical models, in addition to a dynamic iceberg forecast model, is performed on several iceberg drift trajectories. Based on this comparison a new statistical forecast scheme is proposed that combines some of the advantages of the other methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.