Abstract

Data-driven reconstruction of biological networks is a crucial step towards making sense of large volumes of biological data. Although several methods have been developed recently to reconstruct biological networks, there are few systematic and comprehensive studies that compare different methods in terms of their ability to handle incomplete datasets, high data dimensions and noisy data. The authors use experimentally measured and synthetic datasets to compare three popular methods - principal component regression (PCR), linear matrix inequalities (LMI) and least absolute shrinkage and selection operator (LASSO) - in terms of root-mean-squared error (RMSE), average fractional error in the value of the coefficients, accuracy, sensitivity, specificity and the geometric mean of sensitivity and specificity. This comparison enables the authors to establish criteria for selection of an appropriate approach for network reconstruction based on a priori properties of experimental data. For instance, although PCR is the fastest method, LASSO and LMI perform better in terms of accuracy, sensitivity and specificity. Both PCR and LASSO are better than LMI in terms of fractional error in the values of the computed coefficients. Trade-offs such as these suggest that more than one aspect of each method needs to be taken into account when designing strategies for network reconstruction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.