Abstract

Cultures of carrot (Daucus carota L.) in a medium without added 2,4-dichlorophenoxyacetic acid were separated into fractions of embryos at different stages of development (large globular and heart, torpedo, and germinating) and nonembryogenic cells. The average starch content per cell in these fractions was similar. However, due to the smaller sizes of the cells of the embryos relative to the nonembryogenic cells, starch content per weight of tissue was higher in the embryos. The ADP-glucose pyrophosphorylase activity per cell in the nonembryogenic cells was double that of the embryo cells. Furthermore, the ratio of ADP-glucose pyrophosphorylase to starch was over 2-fold higher in the nonembryogenic cells, indicating that starch content is not simply determined by ADP-glucose pyrophosphorylase levels. ADP-glucose pyrophosphorylase activity of all culture fractions was directly proportional to the level of a single 50 kilodalton polypeptide detected by immunoblot analysis, using antiserum raised to the purified spinach leaf enzyme. In the same immunoblot analysis, novel polypeptides of 63 and 100 kilodalton were detected in embryos but were absent from nonembryogenic cells. This is one of the few reported examples of specific proteins which differentially accumulate in embryos and nonembryogenic cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.