Abstract
It is generally accepted that sucrose synthase (SuSy), ADP-glucose pyrophosphorylase (AGPase), soluble starch synthase (SSS), granule-bound starch synthases (GBSS) and starch branching enzyme (SBE) play a key role in starch synthesis in wheat grains. Starch synthesis in wheat grains is influenced by genotype and environment. However, what is not known is the degree of variation in enzyme activity during starch accumulation of wheat cultivars differing in kernel types. The present study was carried out to characterize the changing activities of key enzymes during grain filling in two kernel type winter wheat cultivars. Results showed that starch accumulation rate (SAR) and activities of SuSy, AGPase, SSS, GBSS and SBE in large kernel types were significantly higher than those in small kernel types. The soil water deficit experienced during the course of the experiment led to an increase at early grain-filling period and decrease during late grain-filling, respectively, in SAR and activities of key enzymes involved in starch synthesis, especially SuSy, AGPase, SSS, and SBE. Water deficit enhanced grain starch accumulation in small kernel types. It suggests that rainfed treatment increase physiological activities during early grain-filling and promote starch accumulation in small kernel types. The simulation with Richards’ equation showed that it was accumulation duration and SAR that determined the starch accumulation in large kernel types. Compared with small kernel types, plants of large kernel types maintained longer filling duration, higher SAR and greater activities of related enzymes during mid and late grain-filling. These observations suggest stronger sink activities in large kernel types at a later stage of development. Consequently, large kernel types have advantages over the small kernel types in terms of the amount of starch accumulation at mid and late stage, but are sensitive to water deficit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.