Abstract

Imaging concealed objects with millimeter-wave coherent radiation is accompanied by speckle. Like all interference phenomena, speckle depends on three light parameters of the millimeter-wave laser beam--phase, wavelength, and angle of incidence--and can be reduced by the diversity of these three parameters. Diversity tools to improve images of concealed objects have been compared. We report measurements, simulations, and image reconstruction results over the whole W-band (75-110 GHz) and demonstrate where each tool works the best. Multiphase diversity is successful in reducing speckle contrast: multiangle to improve the image quality, and multispectral to recognize a small object's features. A simple postprocessing eliminates the areas still covered by interference.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.