Abstract

There is a continuing determination by academics and road professionals alike to investigate the most appropriate methods for identifying road accident hotspots particularly in urban areas. Increasingly this research has involved the use of GIS and spatial analysis in order to define both visually and statistically what can be defined as a road accident hotspot. Traditional methods of hotspot detection by road professionals have included comparing count data at different locations and rating the areas by severity. However the increase use of GIS has lead to academics using sophisticated methods to quantify hotspots. There is, however, no universal definition of a road accident hotspot which means that the definition of a hotspot is open to much speculation. This paper seeks to investigate the merits of three different spatial techniques for quantifying road accident hotspots. Kernel density estimation, network analysis and area wide analysis are used to demonstrate three methods. The methods are then reviewed. There is however an exhaustive list of hotspot detection techniques, not all of which can be outlined in this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.