Abstract
The long-term probability distributions of a spar-type and a semisubmersible-type offshore floating wind turbine response are calculated for surge, heave, and pitch motions along with the side-to-side, fore–aft, and yaw tower base bending moments. The transfer functions for surge, heave, and pitch motions for both spar-type and semisubmersible-type floaters are obtained using the fast code and the results are also compared with the results obtained in an experimental study. The long-term predictions of the most probable maximum values of motion amplitudes are used for design purposes, so as to guarantee the safety of the floating wind turbines against overturning in high waves and wind speed. The long-term distribution is carried out using North Atlantic wave data and the short-term floating wind turbine responses are represented using Rayleigh distributions. The transfer functions are used in the procedure to calculate the variances of the short-term responses. The results obtained for both spar-type and semisubmersible-type offshore floating wind turbine are compared, and the study will be helpful in the assessments of the long-term availability and economic performance of the spar-type and semisubmersible-type offshore floating wind turbine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Offshore Mechanics and Arctic Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.