Abstract
The effects of the preparation method (mixing, chemical polymerization, or ultrasound treatment) on the structure and functional properties of soy protein isolate-(–)-epigallocatechin-3-gallate (SPI-EGCG) complexes were examined. The mixing treated SPI-EGCG samples (M−SE) were non-covalently linked, while the chemical polymerization and ultrasound treated SPI-EGCG samples (C-SE and U-SE, respectively) were bound covalently. The covalent binding of EGCG with protein improved the molecular weight and changed the structures of the SPI by decreasing the α-helix content. Moreover, U-SE samples had the lowest particle size (188.70 ± 33.40 nm), the highest zeta potential (−27.82 ± 0.53 mV), and the highest polyphenol binding rate (59.84 ± 2.34 %) compared with mixing and chemical polymerization-treated samples. Furthermore, adding EGCG enhanced the antioxidant activity of SPI and U-SE revealed the highest DPPH (84.84 ± 1.34 %) and ABTS (88.89 ± 1.23 %) values. In conclusion, the SPI-EGCG complexes prepared by ultrasound formed a more stable composite system with stronger antioxidant capacity, indicating that ultrasound technology may have potential applications in the preparation of protein-polyphenol complexes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.