Abstract

We compare four different approximate solvers for the generalized Riemann problem (GRP) for non-linear systems of hyperbolic equations with source terms. The GRP is a special Cauchy problem for a hyperbolic system with source terms whose initial condition is piecewise smooth. We briefly review the four solvers currently available and carry out a systematic assessment of these in terms of accuracy and computational efficiency. These solvers are the building block for constructing high-order numerical schemes of the ADER type for solving the general initial-boundary value problem for inhomogeneous systems in multiple space dimensions, in the frameworks of finite volume and discontinuous Galerkin finite element methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call