Abstract

This study focused on the characterisation of soluble microbial products (SMPs) produced from a full-scale multi-stage (anaerobic/aerobic) industrial wastewater treatment plant, and contrasted them to the SMPs detected in the effluent of a lab-scale AnMBR treating synthetic wastewater to determine if there were any common solutes detected irrespective of the feed organics. Recently developed analytical methods using gas chromatography coupled mass spectrometry (GC–MS) and liquid chromatography coupled quadrupole-time-of-flight (LC-Q-ToF) for SMP characterisation in a wide molecular weight (MW) range of 30–2000 Da (Da) were applied. Samples collected from the Industrial Wastewater plant were the upflow anaerobic sludge blanket (UASB) influent and effluent, and aerobic membrane bioreactor (MBR) effluent before discharge. The GC–MS detected a spike in cyclooctasulphur in the UASB effluent, an indicator of shock-loading, which disappeared after the MBR process. Alkanes, acids and nitrogenous compounds were found to be the end-products from the GC–MS results, while LC-Q-ToF analysis revealed that eicosanoids, a group of cell-signalling molecules, were produced in the aerobic MBR, and made up 71% of its effluent. A comparison of the submerged anaerobic membrane bioreactor (SAMBR) and aerobic MBR effluents using GC–MS showed that there was only a small degree of similarity between the SMPs, comprising mainly long chain alkanes and phthalate. On the other hand, LC-Q-ToF showed a large contrast in compound composition, mostly having cell-signalling functions, which deepened our understanding of the different metabolic processes occurring in aerobic and anaerobic systems. These data could be useful for future work in various areas such as controlling quorum-sensing and biofilm formation, process optimisation and control, and microbial ecology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call