Abstract

The effects of two different duration space-flights on the extent of atrophy, fiber type composition, and myosin heavy chain (MHC) content of rat soleus muscles were compared. Adult male Fisher rats (n=12) were aboard flight STS-57 and exposed to 10 days of microgravity and adult ovariectomized female Spraque-Dawley rats (n=12) were aboard flight STS-62 for 14 days. Soleus muscles were bilaterally removed from the flight and control animals and frozen for subsequent analyses. Muscle wet weights, fiber types (I, IC, IIC, and IIA), cross-sectional area, and MHC content were determined. Although a significant difference was found between the soleus wet weights of the two ground-based control groups, they were similar with regard to MHC content (ca 90% MHCI and ca 10% MHCIIa) and fiber type composition. Unloading of the muscles caused slow-to-fast transformations which included a decrease in the percentage of type I fibers and MHCI, an increase in fibers classified as type IC, and the expression of two fast myosin heavy chains not found in the control rat soleus muscles (MHCIId and MHCIIb). Although the amount of atrophy (ca 26%) and the extent of slow-to-fast transformation (decrease in the percentage of MHCI from 90% to 82.5%) in the soleus muscles were similar between the two spaceflights, the percentages of the fast MHCs differed. After 14 days of spaceflight, the percentage of MHCIIa was significantly lower and the percentages of MHCIId and MHCIIb were significantly higher than the corresponding MHC content of the soleus muscles from the 10-day animals. Indeed, MHCIId became the predominant fast MHC after 14 days in space. These data suggest fast-to-faster transformations continued during the longer spaceflight.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.