Abstract

Assessment of management-induced changes in soil quality is important to sustaining high crop yield. A large diversity of cultivated soils necessitate identification development of an appropriate soil quality index (SQI) based on relative soil properties and crop yield. Whereas numerous attempts have been made to estimate SQI for major soils across the World, there is no standard method established and thus, a strong need exists for developing a user-friendly and credible SQI through comparison of various available methods. Therefore, the objective of this article is to compare three widely used methods to estimate SQI using the data collected from 72 soil samples from three on-farm study sites in Ohio. Additionally, challenge lies in establishing a correlation between crop yield versus SQI calculated either depth wise or in combination of soil layers as standard methodology is not yet available and was not given much attention to date. Predominant soils of the study included one organic (Mc), and two mineral (CrB, Ko) soils. Three methods used to estimate SQI were: (i) simple additive SQI (SQI-1), (ii) weighted additive SQI (SQI-2), and (iii) statistically modeled SQI (SQI-3) based on principal component analysis (PCA). The SQI varied between treatments and soil types and ranged between 0–0.9 (1 being the maximum SQI). In general, SQIs did not significantly differ at depths under any method suggesting that soil quality did not significantly differ for different depths at the studied sites. Additionally, data indicate that SQI-3 was most strongly correlated with crop yield, the correlation coefficient ranged between 0.74–0.78. All three SQIs were significantly correlated (r = 0.92–0.97) to each other and with crop yield (r = 0.65–0.79). Separate analyses by crop variety revealed that correlation was low indicating that some key aspects of soil quality related to crop response are important requirements for estimating SQI.

Highlights

  • A wide range of agricultural soils represents diversely managed arable lands while the main goal to improve soil quality, crop yield, and reduce the ecological foot print

  • Organic soil (Mc) had much improved soil properties compared to those of the mineral counterparts in all four different depths (Ko and CrB). Impacts of all these parameters on overall soil quality in four soil depths calculated by three indexing methods are discussed

  • The data presented support the following conclusions: The soil quality index (SQI) calculated by three different methods indicated that studied muck soil has significantly higher soil quality than that of mineral soils under on-farm conditions

Read more

Summary

Introduction

A wide range of agricultural soils represents diversely managed arable lands while the main goal to improve soil quality, crop yield, and reduce the ecological foot print. Soil quality is defined as the soil’s capacity to function within natural or managed ecosystem boundaries and to sustain plant productivity while reducing soil degradation [1,2,3,4]. Soil quality is often related to the management goal and practices as well to soil characteristics. The SQI was assessed so that the management goals are focused on productivity per se, which may result in soil degradation [7], and on environmental issues. An appropriate SQI may have three component goals: environmental quality, agronomic sustainability, and socio-economic viability [8]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call