Abstract
Soil erosion is a significant process in the loss of soil/land resources, degradation and desertification. Traditionally, wind and water erosions have been studied and modelled separately. A quantitative sediment flux measure from a specific soil due to both water and wind erosion is lacking. The study aimed to drive such erosion rates in a semi-arid loess soil that is subjected to both forces of erosion. Soil samples from top-and sub-layers of the soil were analyzed for physical and chemical properties, including characteristics of soil aggregation. We performed targeted laboratory experiments using a boundary layer wind-tunnel for wind erosion and rainfall simulator for water erosion. Rates of sediment flux that were calculated for the topsoil and the subsoil revealed an opposite trend between water and wind erosion. This indicates that soil erodibility strongly depends on the erosional force applied rather than a certain soil property. The study conducted in a semi-arid region and may serve as a case study under climate change scenarios, in which more (non-arid) regions will be subjected to increase soil erosion.    
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.