Abstract

BackgroundRigid attachment systems are one of the methods used to compensate for soft tissue artifact (STA) inherent in joint motion analyses. Research question: The goal of this study was to quantify STA of an exoskeleton design to reduce STA at the knee, and to assess the accuracy of 3D knee kinematics recorded with the exoskeleton in non-obese and obese subjects during quasi-static weight-bearing squatting activity using biplane radiography. MethodsNine non-obese and eight obese subjects were recruited. The exoskeleton was calibrated on each subject before they performed a quasistatic squatting activity in the EOS® imaging system. 3D models of exoskeleton markers and knee bones were reconstructed from EOS® radiographs; they served to quantify STA and to evaluate differences between the markers and bones knee kinematics during the squatting activity. ResultsThe results showed that STA observed at the femur was larger in non-obese subjects than in obese subjects in frontal rotation (p = 0.004), axial rotation (p = 0.000), medio-lateral displacement (p = 0.000) and antero-posterior displacement (p = 0.019), while STA observed at the tibia was lower in non-obese subjects than in obese subjects for the three rotations (p < 0.05) and medio-lateral displacement (p = 0.015). Differences between the markers and bones knee kinematics increased with knee flexion and were similar in both groups, except for abduction-adduction: 4.9° for non-obese subjects against 2.3° for obese subjects (p = 0.011). Significance: This study demonstrated that STA at the femur and its impact on knee abduction-adduction using a specific exoskeleton were greater among non-obese subjects than obese subjects, which is encouraging for future biomechanical studies on pathologies such as osteoarthritis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call