Abstract
The snow water equivalent (SWE) for the Red River basin of North Dakota and Minnesota was retrieved from data acquired by passive microwave SSM/I (Special Sensor Microwave Imager) sensors mounted on the US Defense Meteorological Satellite Program (DMSP) satellites, physiographic and atmospheric data by an artificial neural network called Modified Counter Propagation Network (MCPN), a Projection Pursuit Regression (PPR) and a nonlinear regression. The airborne gamma-ray measurements of SWE for 1989 and 1997 were used as observed SWE, and SSM/I data of 19 and 37 GHz frequencies, in both horizontal and vertical polarization, were used for the calibration (1989 data from DMSP-F8) and validation (1997 data from DMSP-F10 and F13 of both ascending and descending overpass times were combined) of the models. The SSM/I data were screened for the presence of wet snow, large water bodies like lakes and rivers, and depth-hoar. The MCPN model produced encouraging results in both calibration and validation stages ( R 2 was about 0.9 for both calibration ( C) and validation ( V)), better than PPR ( R 2 was 0.86 for C and 0.62 for V), which in turn was better than the multivariate nonlinear regression at the calibration stage ( R 2 was 0.78 for C and 0.71 for V). MCPN is probably better than the linear and nonlinear regression counterparts because of its parallel computing structure resulted from neurons interconnected by a parallel network and its ability to learn and generalize information from complex relationships such as the SWE-SSM/I or other relationships encountered in geosciences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.