Abstract

This paper proposes a numerical method for analyzing whipping using a fully coupled hydroelastic model. The numerical analysis method utilizes a 3-D Rankine panel method, 1-D/3-D finite element methods, and a 2-D generalized Wagner model, which are strongly coupled in the time domain. The computational results were compared with those of a model test of an 18000-TEU containership. The slamming pressures and whipping responses to regular waves for bow flare and stern slamming were compared. Furthermore, the slamming pressure was decomposed into its dynamic and static components. The numerical and experimental models produced similar results. In addition, the effects of the discretization and geometric approximation of the 2-D slamming sections were investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.