Abstract

The aim of this study was to evaluate the relationship between different quantification methods used for the measurement of bone plasma clearance (K(i)) using F-PET at the hip and lumbar spine. Twelve healthy postmenopausal women aged 52-71 years were recruited. Each participant underwent 60-min dynamic F-PET scans at the lumbar spine and hip on two separate occasions with an injected activity of 90 and 180 MBq, respectively. Image-derived input functions were obtained at the aorta from the lumbar spine scans. K(i) was evaluated using a three-compartment four-parameter model (K(i-4k)), three-compartment three-parameter model (K(i-3k)), Patlak analysis (K(i-Pat)), spectral analysis (K(i-Spec)) and deconvolution (K(i-Decon)). Standardized uptake values (SUVs) were also measured. The Pearson correlation between K(i-4k) and K(i-3k), K(i-Pat), K(i-Spec), K(i-Decon) and SUV were 0.91, 0.97, 0.94, 0.95 and 0.93, respectively, with a significance of P less than 0.0001. The differences between the correlations measured using Fisher's Z-test were not significant (P>0.05). Bland-Altman analysis showed that the limits of agreement for K(i) measured as the SD of the differences were 0.0082 (25.9%), 0.0062 (11.7%), 0.0098 (20.1%) and 0.0056 (25.5%) ml/min/ml, respectively, and the biases were -0.0081 (-23.8%), -0.0075 (-23.7%), -0.0107 (-29.5%) and -0.0015 (0.8%) ml/min/ml, respectively. All five methods of quantification (K(i-3k), K(i-Pat), K(i-Spec), K(i-Decon) and SUV) strongly correlated with K(i-4k). Although systematic differences of up to 29% were found between K(i-4k) and the other methods (K(i-3k), K(i-Pat), K(i-Spec) and K(i-Decon)), these should not affect the conclusions of clinical studies, provided the methods are applied consistently. However, care should be taken when comparing reports that use different methods of quantification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.