Abstract

Experiments on the spatial and temporal structure of the breakdown process of sinusoidal- and pulsed-operated dielectric barrier microdischarges (MDs) are compared. Three different waveforms are considered: a sinusoidal waveform at 20 kHz and pulsed-bipolar and unipolar-voltage profiles at 10 kHz with varying duty cycles (asymmetric pulse). Electrical data and simultaneous streak and iCCD images of individual MDs in dielectric barrier discharges (DBDs) with 1 mm gap in a gas mixture of 0.1 vol% O2 in N2 at atmospheric pressure are recorded. For sinusoidal-operated DBDs there are no significant differences between the MDs at positive and negative half-periods. Sinusoidal operation corresponds to pulsed-bipolar operation with symmetrical pulses, but with lower streamer velocities and different spatio-temporal emission distribution. The development of pulsed-driven MDs is determined by the voltage between both electrodes and not by the polarity of the driven electrode, resulting in nearly the same behavior of bipolar- and unipolar-pulsed-driven MDs. DBDs operated with asymmetric pulses show a significant difference in the spatial structure and in the temporal behavior between the rising and falling slopes of the high voltage pulse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.