Abstract

A comparison of heavy-ion-induced single-event transients (SETs) in silicon–germanium heterojunction bipolar transistors (SiGe HBTs) fabricated on both bulk and silicon-on-insulator (SOI) substrates is presented. Experimental heavy-ion data show a reduction of sensitive volume of $\approx 350\times $ for the SiGe HBTs fabricated on SOI compared to those on a bulk substrate. Furthermore, the results indicate that the sensitive volume of the SOI SiGe HBTs is confined to the intrinsic device. These results have been confirmed using pulsed laser data and TCAD simulations. Limiting the charge collection depth of SiGe HBTs by fabricating them on SOI facilitates correlation of ion and laser results. The improved ease of correlation is a result of suppressing diffusive charge collection mechanisms that are difficult to replicate with the charge deposition profile generated by two-photon absorption using a tightly focused laser beam. However, a potential issue with pulsed laser testing is determining the loss of the pulse energy through the buried oxide, which requires detailed knowledge of the semiconductor platform. Overall, the reduction of sensitive volume for the SOI SiGe HBTs compared to those on a bulk substrate is a clear advantage from a single-event upset vulnerability perspective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.