Abstract

BACKGROUND: There is insufficient knowledge about the rate of force development (RFD) characteristics over both single and multiple joint movements and the electromechanical delay (EMD) values obtained in athletes and untrained individuals. OBJECTIVE: To compare single and multiple joint functions and the neural drive of trained athletes and untrained individuals. METHODS: Eight trained athletes and 10 untrained individuals voluntarily participated to the study. The neuromuscular performance was assessed during explosive and maximum voluntary isometric contractions during leg press and knee extension related to single and multiple joint. Explosive force and surface electromyography of eight superficial lower limb muscles were measured in five 50-ms time windows from their onset, and normalized to peak force and electromyography activity at maximum voluntary force, respectively. The EMD was determined from explosive voluntary contractions (EVC’s). RESULTS: The results showed that there were significant differences in absolute forces during knee extension maximum voluntary force and EVC’s (p< 0.01) while trained athletes achieved greater relative forces than untrained individuals of EVC at all five time points (p< 0.05). CONCLUSIONS: The differences in explosive performance between trained athletes and untrained individuals in both movements may be explained by different levels of muscle activation within groups, attributed to variation in biarticular muscle function over both activities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.