Abstract

Accurate and reliable measurement of rotational speed is crucial in many industrial processes. Recent research provides an alternative approach to rotational speed measurement of dielectric rotors through electrostatic sensing and signal processing. This paper aims to explore the electrostatic phenomenon of rotational machineries, design considerations of the spacing between double electrostatic sensors and effect of dielectric rotors on the performance of the rotational speed measurement systems based on single and double electrostatic sensors. Through a series of experimental tests with rotors of different material types, including polytetrafluoroethylene (PTFE), polyvinyl chloride (PVC) and Nylon, different surface roughness (Ra 3.2 and Ra 6.3) and difference diameters (60mm and 120mm), the accuracy and reliability of the two measurement systems are assessed and compared. Experimental results suggest that more electrostatic charge is generated on the PTFE rotors with a larger diameter and coarser surface and hence better performance of the measurement systems. The single-sensor system yields a relative error of within ±1% while the double-sensor system produces an error within ±1.5% over the speed range of 500–3000rpm for all tested rotors. However, the single-sensor system outperforms the double-sensor system at high rotational speeds (>2000rpm) with a relative error less than ±0.05%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.