Abstract
<p style='text-indent:20px;'>This study aims at comparing simulation-based approaches for estimating both the state and unknown parameters in nonlinear state-space models. Numerical results on different toy models show that the combination of a Conditional Particle Filter (CPF) with Backward Simulation (BS) smoother and a Stochastic Expectation-Maximization (SEM) algorithm is a promising approach. The CPFBS smoother run with a small number of particles allows to explore efficiently the state-space and simulate relevant trajectories of the state conditionally to the observations. When combined with the SEM algorithm, this algorithm provides accurate estimates of the state and the parameters in nonlinear models, where the application of EM algorithms combined with a standard particle smoother or an ensemble Kalman smoother is limited.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.