Abstract

Optical communications systems are vital to allow high speed satellite-to-satellite and satellite-to-ground-based communication links with low power consumption and low weight. To predict the performance of such systems it is essential to have an accurate simulation model which allows to predict the experimental results. We have implemented a coherent optical communications system which can be used for ultra long free-space distances. It incorporates a challenging optical phase lock loop (PLL). We also developed a simulation model for this advanced optical telecommunication system. It is shown that the experimental and numerical results obtained are in excellent agreement. By changing the parameters of the simulation model we can predict which of those parameters are most important to achieve a reliable high speed intersatellite optical link over a long free-space distance. One of the key parameters is the performance of our optical PLL. This is most important for systems which use the highly sensitive phase-shift keying (PSK) modulation format. Our developed optical PLL with a linewidth of as low as 130Hz shows excellent results both in simulation and experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.