Abstract
In this work, focused ion beam (FIB) milling of different structures is studied and compared for two different electronic materials, i.e., silicon (Si) and silicon carbide (SiC). Results show that the same processing parameters yield different trench cross sections for Si and SiC, even when the different material removal rates (MRR) are taken into account. In order to investigate more complex structures, nanocone arrays were fabricated in Si and SiC. The difference in the shape of the trench cross section and complex structures can be mainly explained by the significant difference in the angle dependent MRR for both materials. Other effects which occur during FIB irradiation by the non-ideal beam shape such as swelling and damage outside of the purposely processed region are emulated and sensitively studied by scanning probe microscopy techniques such as atomic force microscopy (in-line and off-line) and scanning spreading resistance microscopy, respectively, for SiC and the results are compared with those for Si.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.