Abstract

A comparison of signal-to-noise ratios and rise times was performed on several myoelectric filters used for muscle-force estimation and prosthesis control. Linear, averaging, and adaptive filters were compared using single as well as multiple electrode pairs (spatial filtering). The filters were matched for having the same rise time (0-95%) and the signal-to-noise ratios were measured off-line using the same myoelectric signal recording. The linear filter was a low-pass filter with a time constant of 80 ms. The averaging filter had an averaging time of 250 ms. The adaptive filter was the same as is used in the Utah Artificial Arm. The adaptive filter varied its time constant according to the rate of change of the signal mean. If the rate was high, the time constant was set low. If the rate was low, the time constant was set high. Spatial filtering is where the myoelectric signals from four cutaneous sites over the same muscle were summed, that is, spatially filtered, and the resultant signal was smoothed by the linear, averaging, or adaptive filter. Significant improvement in the signal-to-noise ratio has been shown over conventional linear or averaging filters when using spatial and adaptive filtering, both when used separately and when used together.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call