Abstract
During space travel astronauts will be exposed to a very low, mixed field of radiation containing different high LET particles of varying energies, over an extended period. Thus, defining how human cells respond to these complex low dose exposures is important in ascertaining risk. In the current study, we have chosen to investigate how low doses of three different ion's at various energies uniquely change the kinetics of three different phospho-proteins. A normal hTERT immortalized fibroblast cell line, 82–6, was exposed to a range of lower doses (0.05–0.5 Gy) of radiation of different qualities and energies (Si 1000 MeV/u, Si 300 MeV/u, Si 173 MeV/u, Si 93 MeV/u, Fe 1000 MeV/u, Fe 600 MeV/u, Fe 300 MeV/u, Ti 300 MeV/u, Ti 326 MeV/u, Ti 386 MeV/u), covering a wide span of LET's. Exposed samples were analyzed for the average intensity of signal as a fold over the geometric mean level of the sham controls. Three phospho-proteins known to localize to DNA DSBs following radiation (γH2AX, pATF2, pSMC1) were studied. The kinetics of their response was quantified by flow cytometery at 2 and 24 h post exposure. These studies reveal unique kinetic patterns based on the ion, energy, fluence and time following exposure. In addition, γH2AX phosphorylation patterns are uniquely different from phospho-proteins known to be primarily phosphorylated by ATM. This latter finding suggests that the activating kinase(s), or the phosphatases deactivating these proteins, exhibit differences in their response to various radiation qualities and/ or doses of exposure. Further studies will be needed to better define what the differing kinetics for the kinases activated by the unique radiation qualities plays in the biological effectiveness of the particle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.