Abstract

The aim of the study was to compare the biological activity of the total pool of genes in CD34− umbilical cord blood and bone marrow stem cells and to search for the differences in signaling pathway gene expression responsible for the biological processes. The introductory analysis revealed a big similarity of gene expression among stem cells. When analyzing GO terms for biological processes, we observed an increased activity of JAK-STAT signaling pathway, calcium-mediated, cytokine-mediated, integrin-mediated signaling pathway, and MAPK in a cluster of upregulating genes in CD34− umbilical cord blood stem cells. At the same time, we observed a decreased activity of BMP signaling pathways, TGF-beta pathway, and VEGF receptor signaling pathway in a cluster of downregulating genes in CD34− umbilical cord blood stem cells. In accordance with KEGG classification, the cytokine-cytokine receptor interaction, toll-like receptor signaling pathway, and JAK-STAT signaling pathway are overrepresented in CD34− umbilical cord blood stem cells. A similar gene expression in both CD34− UCB and BM stem cells was characteristic for such biological processes as cell division, cell cycle gene expression, mitosis, telomere maintenance with telomerase, RNA and DNA treatment processes during cell division, and similar genes activity of Notch and Wnt signaling pathways.

Highlights

  • In recent years the scientific environment has expressed a great interest in the nonhematopoietic stem cells (CD34− and CD45−)

  • Differences are seen at the molecular level in gene expression profiles of mesenchymal stem cells (MSCs) coming from different sources

  • A distinct expression profile was characteristic for genes related to antimicrobial activity and to osteogenesis, and this distinct expression profile was more common in the MSC population from bone marrow

Read more

Summary

Introduction

In recent years the scientific environment has expressed a great interest in the nonhematopoietic stem cells (CD34− and CD45−) These stem cells are capable of replicating in vitro without adding any growth factors in the period of more than 10 passages, and, when induced properly, differentiate into at least three types of mesoderm layer cells: osteoblasts, adipocytes, and chondrocytes [1, 2]. They are frequently referred to as the mesenchymal stem cells (MSCs).

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call