Abstract

In this paper we study and compare three types of shape derivatives for free boundary identification problems. The problem takes the form of a severely ill-posed Bernoulli problem where only the Dirichlet condition is given on the free (unknown) boundary, whereas both Dirichlet and Neumann conditions are available on the fixed (known) boundary. Our framework resembles the classical shape optimization method in which a shape dependent cost functional is minimized among the set of admissible domains. The position of the domain is defined implicitly by the level set function. The steepest descent method, based on the shape derivative, is applied for the level set evolution. For the numerical computation of the gradient, we apply the Cut Finite Element Method (CutFEM), that circumvents meshing and re-meshing, without loss of accuracy in the approximations of the involving partial differential models. We consider three different shape derivatives. The first one is the classical shape derivative based on the cost functional with pde constraints defined on the continuous level. The second shape derivative is similar but using a discretized cost functional that allows for the embedding of CutFEM formulations directly in the formulation. Different from the first two methods, the third shape derivative is based on a discrete formulation where perturbations of the domain are built into the variational formulation on the unperturbed domain. This is realized by using the so-called boundary value correction method that was originally introduced to allow for high order approximations to be realized using low order approximation of the domain. The theoretical discussion is illustrated with a series of numerical examples showing that all three approaches produce similar result on the proposed Bernoulli problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.