Abstract

AbstractA three-dimensional numerical model was built to estimate the heat transfer between the soil and a shallow basement in four different climates (cold, temperate, semi-arid and arid climates) for, respectively, conditioned and unconditioned cases. The governing heat transfer equation in soil and basement was solved by the finite difference method using the alternating-direction implicit scheme (ADI). The air temperature for the case of conditioned shallow basement was maintained constant while it was computed for the case of unconditioned cellar using energy balance equation. The effects of the basement geometry, soil types and climatic conditions on the thermal behavior of the conditioned and unconditioned shallow basement were carried out. The heat losses and isotherms analysis showed that the heat flux is more significant through the walls than the basement floor and occurred mainly in the walls-floor edges. Furthermore, lowering the thermal diffusivity of the soil leads to a decrease in the shal...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.