Abstract

Comparative results of settlements of soil-cement soil bases of multi-story residential buildings determined by the methods of linear soil mechanics, finite element modeling in a planar (2D) and spatial (3D) setting using an elastic-plastic soil model, as well as long-term (over ten years) data of geodetic observations of natural objects are given. The object of this work was to evaluate the reliability of various methods of predicting the settlements of soil-cement soil bases of buildings on strip foundations in the presence of weak soils within the compressible soil thickness and reinforcement of the massif to a depth smaller than the width of the foundations. It was established that in the presence of layers of weak soils within the compressible soil thickness under strip foundations and reinforcement of the massif to a depth less than their width the actual settlements of such soil base exceeds the values allowed by the norms. The scientific novelty of the work is it was determined in the first time that under these conditions the methods of linear soil mechanics underestimate the calculated settlements by more than two times compared to their actual values. On the other hand, the high reliability of the use of mathematical modeling methods using the elastic-plastic soil model has been proven.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call