Abstract

BackgroundCanine vector-borne diseases (CVBD) are caused by a diverse array of pathogens with varying biological behaviors that result in a wide spectrum of clinical presentations and laboratory abnormalities. For many reasons, the diagnosis of canine vector-borne infectious diseases can be challenging for clinicians. The aim of the present study was to compare CVBD serological and molecular testing as the two most common methodologies used for screening healthy dogs or diagnosing sick dogs in which a vector-borne disease is suspected.MethodsWe used serological (Anaplasma species, Babesia canis, Bartonella henselae, Bartonella vinsonii subspecies berkhoffii, Borrelia burgdorferi, Ehrlichia canis, and SFG Rickettsia) and molecular assays to assess for exposure to, or infection with, 10 genera of organisms that cause CVBDs (Anaplasma, Babesia, Bartonella, Borrelia, Ehrlichia, Francisella, hemotropic Mycoplasma, Neorickettsia, Rickettsia, and Dirofilaria). Paired serum and EDTA blood samples from 30 clinically healthy dogs (Group I) and from 69 sick dogs suspected of having one or more canine vector-borne diseases (Groups II-IV), were tested in parallel to establish exposure to or infection with the specific CVBDs targeted in this study.ResultsAmong all dogs tested (Groups I-IV), the molecular prevalences for individual CVBD pathogens ranged between 23.3 and 39.1%. Similarly, pathogen-specific seroprevalences ranged from 43.3% to 59.4% among healthy and sick dogs (Groups I-IV). Among these representative sample groupings, a panel combining serological and molecular assays run in parallel resulted in a 4-58% increase in the recognition of exposure to or infection with CVBD.ConclusionsWe conclude that serological and PCR assays should be used in parallel to maximize CVBD diagnosis.

Highlights

  • Canine vector-borne diseases (CVBD) are caused by a diverse array of pathogens with varying biological behaviors that result in a wide spectrum of clinical presentations and laboratory abnormalities

  • Paired serum and ethylenediaminetetraacetic acid (EDTA) samples retrieved from storage at -80°C from 30 clinically healthy dogs examined during routine wellness appointments (Group I) were tested to establish background exposure to or infection with the defined population of CVBDs targeted in this study

  • Six, and seven dogs were seroreactive to E. canis, B. henselae or R. rickettsii antigens, respectively

Read more

Summary

Introduction

Canine vector-borne diseases (CVBD) are caused by a diverse array of pathogens with varying biological behaviors that result in a wide spectrum of clinical presentations and laboratory abnormalities. The mode(s) of transmission are incompletely understood, several Bartonella species are thought to be transmitted to dogs by fleas and ticks. These and other factors have contributed to an evolving appreciation of the role of CVBDs as a cause of disease in dogs. As the optimal treatment modalities differ for these diseases, it behooves veterinarians to choose CVBD diagnostic tests wisely, so as to economically and accurately evaluate exposure to and/or infection with a spectrum of vector-borne pathogens

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.