Abstract

Three-dimensional ultrasound is emerging as a viable resource for the imaging of internal organs. Quantitative studies correlating ultrasonic volume measurements with MRI data continue to validate this modality as a more efficient alternative for 3D imaging studies. However, the processing required to form 3D images from a set of 2D images may result in a loss of spatial resolution and may give rise to artifacts. This paper examines a method of automatic feature extraction and data quantification in 3D data sets as compared with original 2D data. This work will implement an active contour algorithm to automatically extract the endocardial borders of septal defects in echocardiographic images, and compare the size of the defects in the original 2D images and the 3D data sets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.