Abstract

HighlightsSensor-based irrigation scheduling methods (SBISM) were compared with computerized water balance scheduling.Number and time of irrigation events scheduled using the SBISM were often different from those predicted by the computerized method.The highly variable soils at the Missouri site complicated interpretation of the sensor values.Both SBISM and computerized water balance scheduling could be used for irrigation scheduling with close attention to soil texture and effective rainfall or irrigation.Abstract. Sensor-based irrigation scheduling methods (SBISM) measure soil moisture to allow scheduling of irrigation events based on the soil-water status. With rapid development of soil moisture sensors, more producers have become interested in SBISM, but interpretation of the sensor data is often difficult. Computer-based methods attempt to estimate soil water content and the Arkansas Irrigation Scheduler (AIS) is one example of a weather-based irrigation scheduling tool that has been used in the Mid-South for many years. To aid producers and consultants interested in learning more about irrigation scheduling, field studies were conducted for two years in Mississippi and a year in Missouri to compare SBISM with the AIS. Soil moisture sensors (Decagon GS-1, Acclima TDR-315, Watermark 200SS) were installed in multiple locations of a soybean field (Mississippi) and cotton field (Missouri). Soil water contents of the fields were measured hourly at multiple depths during the growing seasons. The AIS was installed on a computer to estimate soil water content and the required data were obtained from nearby weather stations at both locations and manually entered in the program. In Mississippi, numbers and times of the irrigation events triggered by the SBISM were compared with those that would have been scheduled by the AIS. Results showed the number and time of irrigation events scheduled using the SBISM were often different from those predicted by the AIS, especially during the 2018 growing season. The highly variable soils at the Missouri site complicated the interpretation of the sensor values. While all of the sites were within the Tiptonville silt loam map unit, some of the measurements appeared to come from sandier soils. The AIS assumed more water entered the soil than the sensors indicated from both irrigations and rainfalls less than 25 mm. While the irrigation amounts were based on the pivot sprinkler chart, previous testing had confirmed the accuracy of the charts. Furthermore, the difference varied among sites, especially for rainfall large enough to cause runoff. The recommendations based on the Watermark sensors agreed fairly well with the AIS in July after the data from the sandiest site was omitted; however, the later irrigations called for by the AIS were not indicated by the sensors. Both the sensor-based irrigation scheduling method and the AIS could be used as tools for irrigation management in the Mid-South region, but with careful attention to soil texture and the effective portion of rainfall or irrigation. Keywords: Irrigation scheduling, Soil moisture sensor, Soil water content, Water management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call